В своих статьях мы уже неоднократно затрагивали тему финишных покрытий печатных плат, и до сих пор эта тема не теряет своей актуальности. Ни один другой этап в производстве печатных плат не менялся столько раз, сколько процесс осаждения финишных покрытий. Активное развитие электронной промышленности ставит новые задачи производителям печатных плат и предъявляет к финишным покрытиям еще более высокие требования, зависящие от многих факторов — экологических, технологических и технических вопросов, финансовых вопросов, производительности и причин отказов.
При становлении технологии изготовления печатных плат у специалистов была возможность припаивать компоненты непосредственно к меди, используя активные флюсы. Когда печатные платы стали выпускать большими партиями, были разработаны защитные покрытия для меди — органические и металлические. Среди методов нанесения финишных покрытий наибольшее распространение получили лужение, химическое и гальваническое осаждение. Лужение — достаточно простой способ, однако он теряет свою актуальность из-за сложности получения поверхностей с необходимой плоскостностью, а также из-за высоких температур процесса облуживания, что равносильно термоудару, отрицательно влияющему на надежность.
Гальваническое осаждение — быстрый и хорошо контролируемый процесс, но при нанесении финишного покрытия по сформированному металлическому рисунку он требует наличия электрического контакта между всеми поверхностями, что бывает сложно обеспечить. Для этого применяются технологические перемычки, соединяющие различные проводники и области в единое целое, которые потом удаляются, однако это снижает технологичность процесса.
Гальваническое оловянно-свинцовое покрытие (гальванический ПОС) — это «побочный эффект» комбинированного позитивного метода изготовления печатных плат. Олово и свинец в пропорциях, близких к эвтектическому сплаву, наносятся гальваническим методом до травления меди, поэтому электрический контакт обеспечивается медной фольгой. Данное покрытие выполняет роль металлического резиста при травлении, а затем оплавляется. Основными недостатками метода являются отсутствие достаточной плоскостности, а также нанесение паяльной маски в местах проводников не на медную поверхность, а на поверхность, покрытую припоем. Этот припой, расплавляясь при пайке оплавлением, а часто и при ручной пайке вблизи контактных площадок, приводит к отслаиванию маски и появлению эффекта апельсиновой корки паяльной маски. Для устранения эффекта отслаивания покрытие в соответствующих местах удаляется механически до нанесения маски, однако такой способ снижает технологичность и надежность платы. В настоящее время это покрытие применяется в некоторых изделиях, где отсутствует паяльная маска и/или указанные недостатки не играют большой роли, а также там, где не предъявляются требования по исключению свинца, и ширина проводников плат и зазоры между элементами рисунка составляют не менее
По этим причинам среди металлических покрытий все большее предпочтение отдается так называемым иммерсионным покрытиям (от англ. immersion — погружение). Действительно, достаточно погрузить деталь в раствор из менее электроотрицательного металла, чтобы начался процесс иммерсионного осаждения.
Иммерсионные процессы — это контактное восстановление металлов из их растворов на электроотрицательных поверхностях. Происходит реакция замещения металла основы на металл из раствора. После образования плотной пленки процесс останавливается, поскольку прекращается контактный обмен. Поэтому иммерсионные процессы образуют принципиально тонкие покрытия — порядка десятых долей микрона. Но и при такой толщине в осаждаемой пленке не может быть непрокрытий, поскольку контактный процесс восстановления продолжится до тех пор, пока поверхность основы не закроется.
Этот метод химического осаждения обеспечивает тонкие и однородные покрытия именно тех участков, где имеется открытая медь, т. е. благодаря реакции замещения процесс является самоуправляемым.
Известные в настоящее время технологии финишных покрытий — иммерсионное золочение с подслоем химического никеля, иммерсионное оловянирование, химическое серебрение, осаждение органической защиты (OSP) позволяют получить плотное и идеально ровное покрытие, не содержащее свинец. Эти технологии являются альтернативой широко распространенной технологии горячего лужения (НАSL) и довольно успешно решают бóльшую часть поставленных задач.
Рассмотрим более подробно методы нанесения финишных покрытий.
Толщина, мкм:
Процесс горячего облуживания состоит в погружении платы на ограниченное время в ванну с расплавленным припоем и быстрой выемке ПП с обдувкой струей горячего воздуха, убирающей излишки припоя и выравнивающей покрытие. Но при этом процессе наплывы припоя все равно остаются (РИС.1). Особенно много их на развитых металлических поверхностях. В последующей сборке наплывы мешают установке мелких компонентов, что и ограничивает применение HASL.
Плюсы:
Минусы:
Толщина, мкм:
Плюсы:
Минусы:
Процесс похож на процесс нанесения иммерсионного золота.
Толщина покрытия: 0,05 — 0,1 мкм
Плюсы:
Минусы:
Толщина покрытия:
Альтернативой покрытию металлами является покрытие органическими защитными покрытиями. Они обеспечивают плоскую поверхность и не приводят к замыканию контактов элементов с большой степенью интеграции. Имеют меньшую стоимость, чем покрытие никелем или золотом. Применение OSP позволяет при пайке использовать смываемые водой или безотмывные флюсы. К тому же этот процесс экологически безопасен.
Тесты показали, что при нормальных условиях хранения печатные платы, покрытые OSP, сохраняют паяемость более одного года. Также органические покрытия разлагаются при пайке, тогда как металлические покрытия растворяются в сплаве, образующем паяное соединение.
Плюсы:
Минусы:
Толщина, мкм:
Иммерсионное покрытие обеспечивает высокую плоскостность печатных площадок платы и совместимость со всеми способами пайки.
Процесс нанесения иммерсионного олова схож с процессом нанесения иммерсионного золота.
Иммерсионное олово имеет хорошую паяемость после длительного хранения, которая обусловлена введением подслоя органометалла
Барьерный подслой предотвращает взаимную диффузию меди и олова, образование интерметаллидов и рекристаллизацию олова. Нитевидные кристаллические усы не могут самопроизвольно образовываться из ImmSn, поскольку толщина покрытия недостаточна для их формирования.
Плюсы:
Минусы:
Существует еще одно, едва ли не самое основное требование к финишным покрытиям ПП — надежность. Испытания образцов ПП с различными видами финишных покрытий показали, что свежеосажденные покрытия имеют характеристики, не уступающие характеристикам, полученным при горячем лужении (HASL), чего нельзя сказать о результатах после искусственного старения.
На примере одной из важнейших характеристик покрытий — смачиваемости припоем при пайке, мы видим ухудшение или полное отсутствие смачиваемости по сравнению с горячим лужением при следующих условиях искусственного старения:
1. Пары воды / 8 час:
2. Т = 85 °С / отн. влажность 85 % / 24 час:
3. Т= 155 °С / 4 час:
Эти результаты значительно сокращают области применения ПП с указанными финишными покрытиями. Рейтинг паяемости бессвинцовых финишных покрытий представлен на РИС.4.
Далее рассмотрим два самых перспективных финишных покрытия: иммерсионного олова с подслоем органометалла и иммерсионного золота с подслоем никеля.
ООО «Остек-Сервис-Технология» совместно с компанией J-KEM International AB (Швеция) предлагает технологию осаждения иммерсионного олова нового поколения, позволяющую получить финишное покрытие, которое отвечает современным требованиям к покрытиям ПП и обеспечивает высокую надежность. Производителям ПП хорошо известны проблемы традиционных финишных покрытий иммерсионным оловом. Это миграционные процессы, связанные с диффузией меди и олова, образование интерметаллидов на границе медь/олово, рекристаллизация олова и, как следствие, рост дендридов, потеря паяемости после непродолжительного хранения.
Разработанная технология осаждения иммерсионного олова нового поколения — это комбинация двух технологий: осаждения на медь органического металла (ОМ) в качестве барьерного слоя и последующего осаждения слоя иммерсионного олова (РИС.5).
Что же представляет собой органический металл?
Классические металлы окружены «электронными облаками» — это неограниченное перемещение электронов. Это свойство было обнаружено в веществе, которое не относится к группе классических металлов.
Органический металл — это полимер:
Предварительная обработка очищенной медной поверхности в растворе органического металла значительно снижает скорость диффузионных процессов, препятствует образованию интерметаллидов и рекристаллизации олова, позволяя получить покрытие с высокими техническими характеристиками. Присутствие органического металла оказывает прямое влияние на структуру последующего осадка иммерсионного олова. Создается более совершенная и менее напряженная структура олова, что дает возможность получить более плотную, гладкую поверхность. Все это значительно снижает скорость процессов окисления и образования дендридов (РИС.6).
Результаты испытаний образцов ПП, на которые в качестве финишного покрытия было нанесено иммерсионное олово с барьерным слоем органического металла, показали, что смачиваемость поверхности (среднее значение 1,28) даже лучше, чем при горячем лужении (среднее значение 1,08). Паяемость покрытия сохраняется до нескольких лет без консервации.
Процесс прост в эксплуатации, легко контролируется, экономичен, может проводиться как в вертикальных, так и в горизонтальных линиях (РИС.7).
Основные стадии процесса:
Кислый очиститель удаляет окислы с поверхности меди. Микротравитель — это стабилизатор для травильного раствора меди, основанного на серной кислоте и перекиси водорода. Воздействуя химически на медную поверхность, микротравитель создает топологию поверхности, обеспечивающую хорошую адгезию с последующими химическими и электрохимическими покрытиями.
Финишное покрытие иммерсионным оловом с подслоем органического металла при толщине 1 мкм имеет ровную, плоскую поверхность, сохраняет паяемость и возможность нескольких перепаек даже после длительного хранения. Имеет технические характеристики покрытия, полностью отвечающие современным требованиями к ПП (РИС.8).
Покрытие ImmSn с подслоем органического металла прошло многочисленные испытания и хорошо зарекомендовало себя в производстве ПП. Это покрытие используется в России уже довольно давно. В настоящее время ImmSn с подслоем органического металла внедрено на 15 российских предприятиях и успешно работает. На все растворы, составляющие процесс осаждения иммерсионного олова с подслоем органического металла, выпущены российские ТУ, а сам процесс введен в действующий стандарт отрасли ОСТ
Также ООО «Остек-Сервис-Технология» и J-KEM International AB предлагают технологию нанесения иммерсионного золота. Само золотое иммерсионное покрытие представляет собой композицию из меди контактной площадки, подслоя химически осажденного никеля и иммерсионно осажденного золота. Тонкий слой золота толщиной 0,05...0,1 мкм несет единственную функцию — защитить никель от окисления для последующей пайки. При пайке оно быстро растворяется в припое и обнажает свежую поверхность никеля для смачивания припоем.
Всякий иммерсионный процесс состоит в реакции замещения одного металла другим из раствора. Поэтому толщина иммерсионного золота в данном случае не может быть большой — как только поверхность никеля будет закрыта золотом, ее взаимодействие с раствором для реакции замещения прекратится. Это значит, что все участки поверхности никеля будут обязательно покрыты золотом, пока они свободны для реакции замещения. Также это значит, что несмотря на чрезвычайно малую толщину иммерсионно осажденного золота его сплошность гарантируется самим механизмом процесса.
Иммерсионное золото можно было бы осаждать и прямо на медь контактной площадки, но тогда их взаимная диффузия приводила бы к быстрой потере паяемости из-за превращения тонкого слоя золота в интерметаллоид CuXAuY, не растворимый в припое. Барьерный подслой никеля толщиной 3...6 мкм предотвращает процесс диффузии и потерю паяемости (РИС.9).
Последовательность процесса нанесения иммерсионного золота с подслоем химического никеля:
Кислый очиститель удаляет с медных поверхностей масла, окислы, отпечатки пальцев, не оказывает воздействия на паяльную маску, краски, эпоксифенольные подложки. Микротравитель равномерно подтравливает медную поверхность, что дает отличную адгезию с последующим осаждением никеля.
Коллоидный палладиевый активатор полностью катализирует медную поверхность, не затрагивая диэлектрики. Использование активатора гарантирует получение плотного никелевого осадка при обработке в ванне химического никелирования. Раствор химического никелирования дает качественное полублестящее покрытие сплавом никель-фосфор с хорошей пластичностью и отличной адгезией к медной поверхности контактной площадки.
Из раствора иммерсионного золочения должен получаться плотный, мелкокристаллический, блестящий золотой осадок 24 каратного золота (РИС. ).
Печатные платы, защитное покрытие на которые нанесено с помощью ENIG-процесса, могут иметь характерный дефект, называемый «черная контактная площадка» («black pad»). Из-за данного дефекта образуются механически непрочные паяные соединения, которые могут треснуть и/или отслоиться даже под действием минимальной нагрузки. Дефект наиболее отчетливо проявляется для корпусов с матричным расположением выводов вследствие большей жесткости — BGA, QFP, QFN. Название дефекта произошло от темно-серого или черного цвета поверхности площадки, обнажающейся при отслоении паяного соединения.
Практика работы на одном из отечественных предприятий показала, что явление «черная контактная площадка» связано с чрезмерной коррозией никеля в процессе иммерсионного осаждения золота. Если кристаллическая структура осажденного никеля имеет вид, отличный от нормального (РИС.9), с большими межкристаллитными прослойками, как показано на РИС. 11, это означает, что не вся поверхность никеля участвует в обменных реакциях с раствором золочения, а сами инородные прослойки, не покрытые золотом, являются причиной зарождения очагов коррозии (РИС. 12, РИС. 13).
Что провоцирует образование чрезмерно больших межкристаллитных прослоек?
Механизм, ведущий к возникновению черной контактной площадки, пока окончательно не изучен, однако проведенные исследования свидетельствуют, в частности, о влиянии на его появление содержания фосфора в ванне, а также остаточного фосфора в покрытии после его нанесения. Фосфор выделяется в процессе восстановления никеля на поверхность медной площадки; при пайке и растворении золота в припое поверхностный слой фосфора обнажается. Он имеет плохую паяемость — припой не смачивает его поверхность и скатывается с нее.
Известно, что при образовании кристаллической структуры все инородные для кристалла компоненты вытесняются в пространство между кристаллами — в межкристаллитные прослойки. В данном случае фосфор, сопровождающий реакцию химического восстановления никеля, может образовывать с никелем твердый раствор, а может и вытесняться в межкристаллитное пространство. Мелкокристаллическая структура никеля с межкристаллитными прослойками образуется при содержании фосфора до 7 %. При бóльшем содержании фосфора, от 7 до 12 %, структура никелевого слоя приобретает аморфную форму и, соответственно, не имеет кристаллической структуры и межкристаллитных прослоек. В этом случае реакция замещения никеля золотом происходит равномерно по всей поверхности с хорошей укрывистостью, что предотвращает процессы окисления никеля. Из этого возникает первая рекомендация: чтобы предотвратить образование «черной контактной площадки» при химическом никелировании следует обеспечивать максимальную концентрацию фосфора.
Подготовка поверхности под иммерсионное золочение — основная операция для обеспечения необходимой морфологии наносимых потом покрытий никеля и золота. Гарантированные результаты дают растворы микротравления. При микротравлении поверхность меди активируется за счет удаления верхнего «отравленного» слоя и получает микрошероховатость, обеспечивающую хорошую адгезию никеля. Равномерная активация поверхности меди способствует равномерному осаждению палладия за счет реакции замещения, а это, в свою очередь, обеспечивает равномерное осаждение никеля. Важно, что за этим должна следовать тщательная отмывка металлизируемой поверхности для предотвращения попадания палладия в раствор никелирования, что привело бы к разрушению раствора.
Отсюда вторая рекомендация: поверхности, подлежащие иммерсионному золочению, должны быть максимально сглажены, что достигается выполнением операции микротравления.
Процесс восстановления золота сопровождается растворением никеля, т.е. это процесс коррозии никеля. При больших скоростях реакции процесс замещения может оказаться несбалансированным, коррозия никеля может стать преобладающей — и под золотом образуется черная, пока не заметная глазу, поверхность никеля. Предлагаемые рынком готовые процессы и растворы для иммерсионного золочения предусматривают в своем составе притормаживающие окислительно-восстановительный процесс компоненты. Третья рекомендация: нужно работать только с надежными и проверенными поставщиками химических процессов и материалов.
Общие рекомендации по обеспечению устойчивости процесса иммерсионного золочения таковы:
Иммерсионное золочение — процесс, требующий высокой технологической культуры, а приведенные рекомендации являются лишь частью особенностей использования технологии золочения.
Точное следование технологии нанесения иммерсионного золота и своевременная замена растворов гарантируют качество покрытия и отсутствие дефекта «black pad».
В ряду современных финишных покрытий для пайки микросхем с малым шагом выводов и миниатюрных чип-компонентов типа 01005 наиболее целесообразно использовать иммерсионные покрытия. Они тонкие, плоские, длительное время сохраняют паяемость.
Проектировщикам аппаратуры наиболее знакомо покрытие золотом по никелю (ENIG), и они его вписывают в конструкторскую документацию, а производители плат выполняют это требование. В этих условиях другие, более эффективные покрытия остаются за бортом, не получая распространения. Конечно, смелый производитель может оформить разрешение на замену, например, иммерсионного золота на иммерсионное олово. Но для этого он должен быть убежден в целесообразности своих действий. Цель данной статьи — показать разработчикам преимущества использования финишного покрытия на основе иммерсионного олова, которое не создает таких проблем, как иммерсионное золото.